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Pipeline of SmartSplat

This section provides a more detailed explanation of the
SmartSplat pipeline, serving as a complementary descrip-
tion to Fig. 3 in the main text.

As illustrated in Fig. 1, given an input image, SmartSplat
first employs a unified Feature-Smart Sampling strategy to
initialize the positions, scales, and color attributes of Gaus-
sian elements, thereby constructing an initial set of 2D Gaus-
sians on the image plane. These Gaussians are then rendered
into a synthesized image via a differentiable rasterization
process. An optimization objective combining L1 loss and
SSIM loss is formulated, and the Gaussian parameters are it-
eratively refined through gradient descent. After training, the
framework yields a high-fidelity reconstructed image repre-
sentation.

In the Feature-Smart Sampling module, an adaptive step-
size block-wise sampling strategy is introduced to effi-
ciently process ultra-high-resolution images while avoiding
out-of-memory issues. Within each sampling block, varia-
tional sampling is first performed by combining image gra-
dient information and color variance, allowing Gaussians to
be preferentially placed in regions with complex structures
or significant color variation. To ensure uniform coverage
across low-texture areas, an exclusion-based uniform sam-
pling strategy is further employed to supplement the distri-
bution of Gaussian positions and scales. Finally, for each
sampled Gaussian, the color attribute is initialized using the
Gaussian-weighted median color within its corresponding
region. This sampling process is highly adaptive, enabling
flexible initialization across arbitrary image resolutions and
compression ratios.

Adaptive Step-Size tiled Variational Sampling
Overview

This section provides a supplementary explanation to
the “Gradient-Color Guided Variational Sampling” subsec-
tion in the main text, offering a detailed exposition of the
adaptive step-size tiled variational sampling strategy.

To efficiently process ultra-high-resolution images while
avoiding out-of-memory issues and ensuring uniform cover-
age during the initialization of Gaussian primitives, we pro-
pose an adaptive step-size tiled variational sampling strat-
egy. This approach partitions the input image into multiple
overlapping or adjacent tiles and performs variational sam-
pling independently within each tile. By introducing adap-
tive strides for tile placement, the strategy ensures spatially
uniform coverage across the entire image domain.

Adaptive Tiling Strategy

Given an input image of size H x W, the number of tiles
required along the height and width dimensions, denoted by
Np, and N, is computed as follows:
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where T represents the predefined tile size (set to 1024 in our
experiments), and [-] denotes the ceiling function. To ensure
uniform spatial distribution of tiles across the image, adap-
tive strides sy, Sy, are subsequently computed as follows:
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When only a single tile is required along a given dimen-
sion, the tile is positioned centrally within the image:
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Otherwise, the position of the ¢-th tile along the height di-
mension is computed as:

p;f) =min(i-sp, H-T), )
and the position of the j-th tile along the width dimension is
given by:

PP = min(j - s, W = T), (5)
wherei=0,..., Ny, —landj =0,...,N, — 1.
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Figure 1: Pipeline of SmartSplat. Given an input image, SmartSplat begins by performing feature-smart sampling, where local
image features, specifically gradient magnitudes and color variances, are analyzed to guide a variational sampling process. This
process adaptively selects informative patches to initialize the positions, scales, and colors of a set of image-space Gaussians.
These Gaussians are then passed through a differentiable rasterization pipeline, producing a rendered image. The system is
supervised by a reconstruction loss computed between the rendered and original images, enabling gradient-based optimization
of Gaussian parameters. Through this pipeline, SmartSplat learns a compact, content-aware Gaussian representation capable of
reconstructing high-fidelity images under extreme compression constraints.

Tiled Variational Sampling

Based on the aforementioned adaptive tiling strategy, the im-

age patch corresponding to tile (4, j) can be formally defined
as:
)

where the dimensmns of the patch are given by:
T(l’]) =min(T, H — p(l ),
T&”) = min(T, W — pg)).

Within each tile sub-image I; ;, the local gradient magni-
tude and color variance of its pixels are computed as follows:
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where C denotes the number of channels, and Ny represents
the neighborhood of pixel x. To eliminate scale discrepan-
cies, the gradient magnitude and color variance are normal-
ized within the tile:
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where € is a small constant added for numerical stability.
Then, the sampling weight is defined as a weighted combi-
nation of these normalized values:
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where )\, denotes the weighting coefficient that balances
the contributions of gradient magnitude and color variance.
In our experiments, )\, is empirically set to 0.9 to achieve
a favorable trade-off between structural detail and color dis-
tribution.

Sampling Probability and Point Selection
Based on the defined sampling weights, the probability of
selecting a pixel x within tile (¢, j) is computed as:
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Subsequently, n; ; pixels are sampled from each tile via
multinomial sampling according to this probability distribu-
tion:

{X(” }oid ~ Multinomial (n; ;, {Ps ; (%) }xer,, ) - (12)

This sampling strategy promotes denser selection in re-
gions exhibiting high gradient magnitudes or significant
color variance, thereby enhancing the initialization quality
of Gaussian primitives in perceptually salient areas.

Sampling Allocation and Global Coordinate
Conversion

Assume the total number of variational sampling points, de-
noted by N;*, is uniformly allocated to all tiles. For each

tile located at (3, j), the number of assigned samples n; ; in
Eq. 12 is computed as:

Ngj = L\ng\wa F L (ix Ny +5)<(N2* mod (N x Now))s
(13)



where 1. denotes the indicator function, which ensures an
even distribution of the residual samples arising from mod-
ulo operation.

The sampled local coordinates (Z, ) within each tile are
subsequently converted to global image coordinates as fol-
lows: 4 )

Lglobal = z +p8)a Yglobal = Y +p;:)> (14)
where pq(,j ) and pﬁf) represent the horizontal and vertical off-
sets of tile (¢, j), respectively.

Adaptive Scale Computation

Evidently, points with higher sampling weights should be
assigned smaller scales, while those with lower weights can
be allocated larger scales. To ensure spatial smoothness, we
adopt an exponential decay function to adaptively compute
the scale. Assuming the initial scales along the x- and y-axes
are equal, the scale is given by:

1
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Assuming that each initialized Gaussian exhibits isotropic
scaling (i.e., equal lengths of the major and minor axes), and
that the image domain of size H x W is uniformly parti-
tioned by IV, non-overlapping circles, the maximum radius
R4z Of each circle can be derived based on the principle of
equal-area coverage:
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To ensure maximal spatial coverage of the image while ac-
counting for the effective influence radius of each Gaussian
during rasterization, the base scale sp,se in Eq. 15 is further
defined as one-third of R,,,q4:
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This scale initialization strategy enables adaptive represen-
tation of images at arbitrary resolutions, without requiring
any additional hyperparameters or heuristic clamping.

DIV16K Dataset

This section provides a detailed description of the con-
structed DIVI6K dataset and serves as a supplementary ex-
planation to the “Dataset” subsection within the “Experi-
mental Setup” section of the main paper.

As illustrated in Fig. 2, to address the challenges posed
by the storage and transmission of Al-generated ultra-
high-resolution images, this study constructs the DIV16K
dataset based on the DIV2K (Agustsson and Timofte 2017)
dataset by applying an 8x upsampling using the Aiarty
Image Enhancer, resulting in 800 images at 16K reso-
lution. In conventional formats such as PNG or JPEG,
the storage size of these images typically ranges from
100 MB to 300 MB per image, imposing significant bur-
dens on storage and network transmission. By leverag-
ing the SmartSplat method, it is possible to substan-
tially reduce storage requirements while maintaining high-
fidelity image representations. Detailed visualizations of our

method’s performance in image compression and recon-
struction are available on the anonymous project website
(https://anonymous.4open.science/w/SmartSplat-BECDY/).

Experimental Details
Implementation.

To mitigate the memory overhead of UHR images during
initialization, all sampling procedures were implemented in
a tile-based manner. For uniform sampling, we designed a
CUDA-based query-to-reference KNN pipeline that enables
efficient exclusion sampling and scale estimation over large
Gaussian points. On 16K-resolution images, the initializa-
tion stage can be completed within approximately 2 ~ 5 sec-
onds. In variational sampling, the weight \,,, was set to 0.9.
For uniform sampling, the parameter K was set to 3. During
training, the proportion of variational sampling A\, was 0.7,
and the loss weight \; was set to 0.9. All Gaussian parame-
ters (means, scales, colors and rotation angles) were jointly
optimized using the Adam optimizer over 50,000 steps, with
learning rates of le—4, 5e—3, be—2, and 1e—3, respectively.
Due to the lack of batch parallelism support in GS rasteriza-
tion, all experiments and evaluations were conducted on a
single GPU within an A800 (80GB) cluster.

Evaluation Metrics.

Peak Signal-to-Noise Ratio (PSNR) is employed to quan-
tify pixel-level distortion between the reconstructed and
ground truth images. To more comprehensively assess per-
ceptual quality and structural fidelity, Multi-Scale Structural
Similarity Index (MS-SSIM) (Wang, Simoncelli, and Bovik
2003) is adopted as a structural error metric, particularly
suitable for 8K-resolution images. However, due to the risk
of OOM errors when computing MS-SSIM on 16K ultra-
high-resolution images, we instead utilize an efficient im-
plementation of SSIM proposed by (Mallick et al. 2024),
based on the original SSIM formulation (Wang et al. 2004),
to ensure stable evaluation.

Baselines.

Although INR-based methods have shown strong perfor-
mance in image representation, their reliance on full-image
training leads to high computational and memory costs, es-
pecially for UHR (8K/16K) images. Therefore, this study
focuses on a comparative analysis with state-of-the-art GS-
based methods, including 3DGS (Kerbl et al. 2023), Gaus-
sianlmage (GI) (Zhang et al. 2024a), LIG (Zhu et al. 2025),
and ImageGS (Zhang et al. 2024b). GI provides two differ-
ent expressions of covariance (RS and Cholesky), both eval-
uated. Since ImageGS lacks public code, we reimplemented
its core strategies on top of GI, excluding the Top-K rasteri-
zation, and denote it as ImageGS*.

References

Agustsson, E.; and Timofte, R. 2017. NTIRE 2017 Chal-
lenge on Single Image Super-Resolution: Dataset and Study.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition Workshop.



12288x 16320, 225MB 10848 16320, 189MB
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Figure 3: Qualitative results on DIV16K. (CR = 50)
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Figure 4: Qualitative results on DIV16K. (CR = 100)
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Figure 5: Qualitative results on DIV16K. (CR = 200)
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Figure 6: Qualitative results on DIV16K. (CR = 500)
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Figure 7: Qualitative results on DIV8K. (CR = 20)



Figure 8: Qualitative results on DIV8K. (CR = 50)



Figure 9: Qualitative results on DIV8K. (CR = 100)



Figure 10: Qualitative results on DIVSK. (CR = 200)



